domingo, 6 de diciembre de 2015

5.1 Transformaciones lineales

Definición: Las transformaciones lineales son las funciones y tratan sobre K-espacios vectoriales que son compatibles con la estructura (es
decir, con la operación y la acción) de estos espacios.

Aquí se presentan las funciones entre espacios vectoriales que preservan las cualidades de los
espacios vectoriales. Es decir, de funciones que preservan la suma y la multiplicación por escalares.

Nosotros usaremos el concepto de la función para darle un tratamiento a los sistemas de ecuaciones lineales. La restricción que haremos sera sobre el tipo de funciones: solo estaremos interesados en funciones que preserven las operaciones en el espacio vectorial. Este tipo de funciones serán llamadas funciones lineales. Primeramente las definiremos, veremos algunas propiedades generales y después veremos como se aplican estos resultados a sistemas de ecuaciones.

Sean V y W dos espacios vectoriales posiblemente iguales.
 Una transformación lineal o mapeo lineal de V a W es una función
T : V → W tal que para todos los vectores u y v de V y cualquier escalar c:
         a) T (u + v) = T (u) + T (v)
         b) T (c u) = c T (u)


Demuestre que la transformación T : R2 →R2 definida por                        
es lineal. 
                  
                  
Entonces : 
                    
   
Por otro lado, para todo escalar c, 
                              
          
Como se cumplen las dos condiciones:      
                      
     
T es lineal.

Una transformación lineal preserva combinaciones lineales. Veremos que, debido a esto, una transformación lineal queda unívoca-mente determinada por los valores que toma en los elementos de una base cualquiera de su dominio.

No hay comentarios:

Publicar un comentario